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quantum algebra SU,,,(2) in the Liiwdin-Shapiro approach 
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ux)O Hamburg SO, Federal Republic of Germany 
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Abstract. The stmcture of the irreducible representations of the two-parameter quantum 
algebra SUp,q(2) is studied. The projection operators for this algebra are constNcted in 
the EwdinShapiro form. The explicit analytical expressions for the SU,,,(Z) aebsch- 
Gordan coefficients are obtained with the help of these projection operators. There are 
clear perspectives to elaborate the theory of tensor operators, universal R-matrix, 6j, 
9 j  symbols, etc for the SUP&) algebra using the Same tools. 

1. Introduction 

Quantum algebras were introduced in [1,2] in connection with the inverse scattering 
problem. This concept was then developed in detail in [3-51 and by other authors 
16121. The y-analogues of the Wigner-Racah algebra have been introduced and 
studied in [6-le]. In particular the angular momentum theory for the SU(2) and 
SU,(2) algebras was considered in [19-271. In recent years special interest has 
been aroused about two-parameter quantum algebras [28-321. The general features 
of the representation theory for the simplest two-parameter algebra SU,,,(2) were 
studied. However, the Clebsch-Gordan problem was not analysed. Here we apply the 
projection operator method, developed in [23,24,33] for standard Lie algebras and 
used in [25,26] for the one-parameter quantum algebra SU,(2), to the solution of the 
Clebsch-Gordan problem. The main advantage of the projection operator method 
lies in the fact that for the calculation of quantities of the Wigner-Racah algebra no 
explicit realization of the generators of the quantum algebra is necessary. Only the 
commutation relations of the generators, their properties with respect to Hermitian 
conjugation and the existence of the highest weight vectors are sufficient for the 
development of the theory of unitary irreducible representation for the quantum 
algebra under consideration. The analysis given below shows as expected that the 
results for the SU,,,(2) irreducible representations are similar to the corresponding 
formulae for the one-parameter SU,(2) algebra [25-271 and hence to those of the 
standard angular momentum theory after the substitution of the numbers 2 by the 
P, y-numbers [[~11,,, 

t On leave of absence from: Institute of Nuclear Physics, Moscow State University, SU-117234 Masaw, 
Russia. 
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except for some factors containing powers of p and q. where p,  q are assumed inde- 
pendent, real positive numbers. In the limit p = q the SUp,,(2) algebra transforms 
into the one-parameter SUq(2) quantum algebra. The case of p = q = 1 corresponds 
to the standard SU(2) Lie algebra. 

The paper is organized in the following manner. In section 2 the structure of the 
irreducible representation of the SUP,,(2) algebra is discussed and the matrices of 
its generators are obtained in explicit form. In section 3 the projection operators for 
this quantum algebra are derived in a form of power series in the J+,  J- generators, 
i.e. in the LowdinShapiro form. The problem of 'vector coupling' of the SUp,q(2) 
'angular momenta' is discussed in section 4. The general analytical formula for the 
SUp,,(2) ClebschGordan coefficients is derived in section 5 by using the projection 
operator approach. The general scheme of calculations is similar to the corresponding 
procedure, developed for the one-parameter quantum algebra SUq(2) in [25,26]. The 
possiiiiiiiry to construct the theory of t i e  tensor operators, 63,93 . . . symbols, 
universal R-matrix etc by this method becomes evident. 

E F Smimov and R F Wehrhahn 

2. SU,,(2)  algebra and its irreducible representations 

The SU,,,(2) algebra is defined by the three generators J o ,  Jt, J- with the fol- 
lowing properties [28]: 

Here we use the notation 

The finite-dimensional unitary irreducible representation (IR) DJ contains the highest 
weight vector Ijj) satisfying the equations 

Jo I jj) = j I jj) Jt I j j )  = 0 ( j j  I jj) = 1. (2.2) 

Using the generator J -  a non-normalized basis vector of the IR with weight m is 
constmctedin the standard way, 

I jm)  = J_" I j j )  with m = j - n . (2.3) 

The squared norm of this vector 

N 2 ( n )  := ( j m  I j m )  = ( j j  I J ;  J_" I jj) 

can be calculated from the next relation that can be proven by induction: 
1 n-1 

J,J:  = (pq - ' )"J_"J+  + [[n]]J_"-'[[2Jo - n t l ] ] ( p q -  ) . (2.4) 
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It follows that 

N 2 ( n )  = [[n]] [[Zj - n + 111 N 2 ( n  - l ) ( p q - ' ) " - '  . (2.5) 

The representation will be finitedimensional only if a maximal value n,, exists, 
with N2(n,, ,  + 1) = 0. This is the case when 2 j  - n,, = 0, i.e. j = in,,, hence 
only integer or half-integer values of the highest weight j ,  labelling the IRS Dj of 
the quantum algebra SU,,,(2) are admissible. In analogy with quantum mechanics 
we call j an 'angular momentum'. For its 'projection', m, the following values are 
possible: m = j , j  - 1 , .  . . , - j .  Thus the enumeration of the IRS of SU,,,(2), the 
weight structure and the dimensions, dim DJ = 2j  + 1, of these IRS are the same as 
for the standard SU(2) algebra. Iterating (2.5) we obtain 

It follows that the orthonormal basis vectors of Dj are given by 

By acting the generator J- on the vector ljm) we obtain 

and the application of Jt to the vector ljm) gives 

(2.7) 

(2.9) 

Hence the explicit form of the IR of SU,,,(2), 

coincides with the corresponding formulae of the standard SU(2) algebra except for 
the substitution of the numbers ( j + m )  and ( j ~ m +  1) by the p,  q-numbers [[jkm]] 
and [ [ j  7 m + 111 respectively. As for the powers of the generators we have 

(2.11) 
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In the standard theory of angular momentum the vectors Ijm) are the eigenvectors 
of the Casimir operator. This operator, characterized by its commutativity with all 
the generators of the algebra, takes for SUp,,(2) the form 

lh F Smimov and R F Wehrhahn 

For its eigenvalues we have 

C, I j m )  = A I j m )  with A = (pq - ' ) j - l [ [ j  + ;]I2. (2.13) 

To prove the relations appearing in this section the identities given in appendix A are 
useful. 

3. Projection operators for the SU,,,(2) algebra 

In this section we introduce the main tool of the paper, the projection operators. Let 
us first consider the projection operator PiJ P having t i e  property 

i.e, the operator PJ projects into the subspace expanded by the highest weight vector 
of the IR D j ,  I j j ) .  As in [26] we seek this projector as a power series in the 
generators J+ and J - ,  

Ncte. that the e q c n e f i ~  af the Oenemtnn J - ,  J+ must be the same due to the 
condition [ P j ,  .Io] = 0. Since Pj 1 jj) = 133) it follows that 

CO = 1 and J+Pj = 0 .  (3.3) 

Using (2.4) the following recurrent relation for the coefficients cI  is found: 

C I - 1  + [[ill [ [ 2 j  + 1 + 111 CI = 0. (3.4) 

It follows that 

The problem of the convergence of the formal series (3.2) is not essential because 
the sum is always applied to vectors containing in their expansion only components 
Ij'j) with j' < j,,,. Hence only a finite number of terms in the series gives a 
non-vanishing contribution, namely all terms with 1 < j,,, - j. 
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Using the properties of J -  and J+ it is easy to check the Hermiticity of PI. In 
a similar manner projecting Pjj-j into the subspace expanded by the lowest weight 
vector of the IR Dj, l j  - j) can be constructed. 

To deal with the Clebsch-Gordan problem a generalization of the projection 
operator is required. Let PA,,,,, be the operator defined by 

Pi,,,,, I j"") = Sm,,,,,,, Jj,j, I jm)  . (3.6) 

Thus this operator cancels all components except for Ijm') and then transforms it 
into the component Ijm). Because of its projecting property we also refer to these 
operators as projection operators, although the exact term strictly applies only to the 
idempotent operators Pi,,,  . 

The formula defining these Hermitian operators is gained in a similar fashion as 
for PJ. Using (2.11) we obtain 

From this equation it follows that 

(Pi,m,) t = Pi,,m 

(3.7) 

(3.8) 

4. Vector coupling of angular momenta' 

It is known that the expansion of the tensor product of the SU(2) IFS Djl @ Dj2 into 
irreducible components is of the form 

and that the generators acting in the tensor product space are given in terms of the 
generators in the initial spaces by 

J,(1,2) = J0 ( l )+5 , (2 )  and J * ( 1 , 2 ) =  J i ( l ) f J i ( 2 ) .  (4.2) 

NOW for the SU,,,(2) algebra the above relations become [28] 

J,(1,2) = J o ( l )  + J,(2) and J*(1,2)  = qJ0(')Ji(2)+ J*( I )P-~@) 

(4.3) 

or in the standard notation for Hopf algebras 

A ( J , )  = Jo@ I +  I @  Jo and A ( J , )  = qJO @ J+ + Ji @ p - J o .  (4.4) 
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From these expressions the action of A( .lo) and A(J+) on the vectors ljlml) @ 
ljzmz) I l j lml,j2m2) can be seen to be given by 

J0(1,2) I jlm1,jzmz) = (ml + mz) I j lml , jzmz)  

and 

J+(1,2) I j lm l , j zmz)  = (qm'(j2m2 f 1 I J* I jzmz)) I j lml r j2m2 % 1) 

+ (p-m2(jlm1 f 1 I J+ I j lm l ) )  I j l m l  l , j z m z ) .  (4.5) 
'Ib calculate any power of the operators J*(1,2) the analogue of the binomial ex- 
pansion formula in the case of the SU,,,(2) algebra is useful. This formula 

(J*(1,2))' = (qJo(')J,(2) + .7+(l)p-Jo~') 

(4.6) 

can be proved by induction. Using (4.4) and (2.12) the Casimir operator in the 
product space Cz(1,2) A(Cz) becomes 

Nc2) = J-(1,2)J+(1,2)(~q-')~~('~') + ( p q -  ) 

The generalization of the 'vector coupling' procedure for the SU,,,(2) algebra consists 
in the construction, using the tensor product basis vectors l j, ml,  jzmz), of such linear 
combinations 

[[Jo(L2)+ w .  (4.7) 1 J o ( l , Z ) - l  

Ijljz9jm) = ( j l m l , j z w  I j l j2 , jm)  Ijlml,jzm2) (4.8) 
mlml 

that belong to the IRS Dj of SU,,,(2), i.e. that are eigenvectors of the Casimir oper- 
ator (4.7) with eigenvalues A = (pq-')j-l[[j+ +]Iz. The coefficients ( j lml , jzmz I 
j l j z , jm)  are the Clebsch-Gordan coefficients (CGC) for the SU,,,(2) quantum al- 
gebra. 

The standard way to calculate the CGC is to multiply both sides of the eigenvalue 
equation 

Cz(1,2) I j l j z , j m )  = A I j l j z , j m )  

by the vector ( j lml,jzmzl,  thus obtaining the recurrent relation for the COCs 
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From these relations the analytic expression for the CGCS can be found in a similar 
fashion, as done in the famous Racah paper [34]. Here, we prefer to apply the 
projection operator method for this purpose. Simultaneously it will be shown that 
the similar expansion (4.1) is also valid for the quantum SU,, (2) algebra. 

However, before turning to this point, it is pertinent to hst the orthonormality 
relations of the CGCS 

(4.10) 

Z GI1 <2) CYehrrh32rrlin rwfficiontr 
I. --~,~,-, --_"I-- -__-I- -I --.-. 11-1 

Using the projection operator A(PA,m,) 5 PA,,,,(l,2), the vector ljlj2,jm) can 
be written in the form 

b'ljz>,im) = Q-'PAm,(1,2) I .i,m;,.7'2mL) (5.1) 

where m' = mi + m; and Q is a normalizing factor. Thus the CGC can be reduced 
to the matrix element of the projection operator: 

(jimi,jzm, I jijz?jm) = Q-'(jimi,jzmz I P L , ( 1 , 2 )  I j i 4 , j z m ; ) .  (5.2) 

Since the values of m' and of either mi or mi are arbitray, to simplify the cal- 
culations we set m' = j and m; = j ,  hence m; = j - j,. Then (5.2) takes the 
form 

(jlml,jzmz I j l j z , jm)  = Q - ' ( j l m , , j z m z I P ~ j ( 1 , 2 )  l ~ l ~ l , ~ z i - j l ) .  

Now, ljIjl) is a highest weight vector, hence the generator J+(1,2) in Pjj(1,2) 
becomes Jt(2)qj1 yielding 



x J!(2)5:(2) I j z j  - j l ) .  (5.6) 

By adopting the standard phase convention for Q being the positive square root of 
Q2 all cocs turn out to be real. Further, it is clear that only values of the total 
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angular momentum j satisfying the condition U, - j, I< j < j, + j 2  are allowed. 
We thus obtain for the quantum algebra SUP,,(2) the standard rule for the 'vector 
coupling of angular momenta', i.e. expansion (4.1). 

Again with (2.11) it follows for the normalizing factor, 

(5.7) 
This last sum can be calculated applying certain summation rules for some specific 
combinations of generalized factorials. Here we prefer the use of a recurrent ap- 
proach as described in appendix B. We End 

Here the summation index I -+ j, t j ,  - j - I is adopted to obtain the expression that 
coincides in the classical limit p = q = 1 with one of standard formulae for the usual 
COCS. Simple analytical formulae can be found for the important particular cases. As 
an example the explicit expressions for the CGcs ( fml jzm2 I f j , , j m )  are given in 
?&!e 1. 

Table 1. The Clebsch-Gordan coefficients ( i m l j z m z  I $ j z , j m )  for h e  quantum 
algebra SUp,,(Z). 

1 . .  , = J 2 + q ,  m , = $  j = j 2 - L ,  2 m , = - ;  
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6. Conclusion 

Yu F Smimov and R F Wehrhahn 

In  the literature a great amount of applications of the quantum groups have been 
discussed. The presence of an arbitrary deforming parameter is one of the main 
advantages of the quantum groups since this allows for more flexibility when dealing 
with applications to physical models. Along these lines of reasoning it appears that in- 
troducing more deforming parameters more useful quantum groups result. However, 
the number of allowed deforming parameters is limited [28]. In fact, for semi-simple 
algebras this number is one (Drinfeld's theorem). For the algebras SU,,,(2) and 
SU,(2) we explicitly see their equivalence from 

In spite of Drinfeld's theorem our results show, however, that important physical 
quantities, like for instance the acs for the SU,,,(2) algebra, do depend on the 
two deforming parameters p and q. There is thus a definite indication that the 
physical applications of the SU,,,(2) algebra are richer than those corresponding to 
the one-parameter deformed aGibra. 

To conclude let us point out that even if in this paper we have only considered the 
structure of the irreducible representations of SUP,,(2) and the CGC problem, it is 
evident that the projection operator method allows several other applications like the 
study of the symmetry properties of the CGCS, the explicit calculation of the Racah 
coefficients, of the tensor operators, the 9 j  symbols etc for this algebra. 
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Appendix B. The calculation of the normalizing factor for the CGCS 

To calmlate 

we firstly consider 

and obtain using the permutation relation (2.10) and, substituting the operator J 0 ( 2 )  
by its eigenvalue j - j ,  

Hence 

The substitution 1 = j, + j ,  - j gives the result 
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Appendix C. Particular cases of the Clebscb-Gordan coetllcients 

Let X,,,! be defied as 

x m I  

Yu F Smimov and R F Wehrhahn 

(jim1,jzmz I pjj (1 ,2)  1 jij19jzj -31) = (j1m1,j2mz I jljz,jj) Q .  
(C1) 

'Ib find a recurrent relation for X,,,, we write 

Noting that 

Jt(1,2)PjJ1,2) = 0 

it follows that 
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To fiid a recurrent relation for Ym note that 

Letting 5+(1,2) act on (jljl,j2m21 the following recursion results 

Since Y, = Q2. iteration of (CY) yields 

Y m P  = (I-"""-""(pq-');[(j, - m2)( j  - m) + j ,  - j  + m,] 

We finally obtain for the CGC 
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